Direct measurement of the strength of microtubule attachment to yeast centrosomes
نویسندگان
چکیده
Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB-microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB-microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB-microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.
منابع مشابه
Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin.
Eukaryotic chromosome segregation depends on the mitotic spindle apparatus, a bipolar array of microtubules nucleated from centrosomes. Centrosomal microtubule nucleation requires attachment of gamma-tubulin ring complexes to a salt-insoluble centrosomal core, but the factor(s) underlying this attachment remains unknown. In budding yeast, this attachment is provided by the coiled-coil protein S...
متن کاملRequirements for NuMA in maintenance and establishment of mammalian spindle poles
Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we d...
متن کاملGCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells.
In simple epithelial cells, attachment of microtubule-organizing centers (MTOCs) to intermediate filaments (IFs) enables their localization to the apical domain. It is released by cyclin-dependent kinase (Cdk)1 phosphorylation. Here, we identified a component of the gamma-tubulin ring complex, gamma-tubulin complex protein (GCP)6, as a keratin partner in yeast two-hybrid assays. This was valida...
متن کاملDynamic Recruitment of CDK5RAP2 to Centrosomes Requires Its Association with Dynein
CDK5RAP2 is a centrosomal protein known to be involved in the regulation of the γ-tubulin ring complex and thus the organization of microtubule arrays. However, the mechanism by which CDK5RAP2 is itself recruited to centrosomes is poorly understood. We report here that CDK5RAP2 displays highly dynamic attachment to centrosomes in a microtubule-dependent manner. CDK5RAP2 associates with the retr...
متن کاملActivity and stability of centrosomes in Chinese hamster ovary cells in nucleation of microtubules in vitro.
Mitotic centrosomes were prepared from Chinese hamster ovary cells and their capacity to nucleate microtubules in vitro was demonstrated by incubation with exogenous brain microtubule protein. The number of microtubules polymerized onto centrosomes was directly counted by electron microscopy of whole-mount preparations. This simple and accurate quantitative assay has permitted characterization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2017